524Uploads
220k+Views
118k+Downloads
Design, engineering and technology
Structural engineering
In this activity students will use case studies to investigate how architectural and building issues can be resolved.
It can accompany our Structural engineering starter and How to design a spaghetti roof structure activities as part of a series of activities that explores structural engineering.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Exploring how architectural and building issues can be resolved through real-life case studies
Students will view the design of the O2 arena by watching our Sound design video. They will also investigate the design of Stanstead Airport by viewing our structural engineering presentation. They will look specifically at the requirements of the buildings and the constraints in terms of structural design. They will also explore the design solutions used to overcome potential issues. This will form the stimulus for students to investigate structures in detail. The students will then be asked to explore possible solutions to a given structural design challenges.
Download our activity overview for a detailed lesson plan on structural engineering for free!
The engineering context
Iconic structures don’t just happen by accident. When designing large buildings, there will often be challenges that need problem solving such as eliminating columns for large open spaces. Engineers need structural knowledge to be able to create innovative designs that are safe, functional, and aesthetic.
Suggested learning outcomes
Students will learn how to identify the key features of structural components. They’ll also know how to identify the various pressures a structural element can undergo and then apply their knowledge of structure to design an effective solution to overcome specific issues.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
Design and make a cookie cutter
In this fun STEM teaching resource learners will discover how to create a 3D model of a basic shape in TinkerCAD and then print it using a 3D printer.
We’ve created this classroom design activity to support the delivery of key topics within design & technology (D&T) and engineering. This teaching resource activity is based on 3D printing and provides a straightforward, practical way to introduce this technology into the curriculum.
This activity introduces the concept of 3D CAD design and some of the basic tools used with CAD software. The software used for the CAD activity is the free and widely used TinkerCAD; however, this could easily be substituted for any other 3D CAD software already available in school.
The activity involves designing a basic shaped cookie cutter, then printing it out using a 3D printer. The guidance given for the printer is generic and may need to be varied depending upon the specific model(s) available in school.
This could be used as a main lesson activity to introduce basic CAD drawing skills or 3D printing. It could also be used as the basis for an integrated scheme of work, where learners subsequently use their cookie cutters to make biscuits, allowing integration with maths (measuring out ingredients) and food technology skills.
Tools/supplies needed:
Computer with TinkerCAD
3D Printer
PLA filament of an appropriate diameter for the equipment available
Optional (for starter): examples of plastic cookie cutters
Follow our step-by-step guide on how to design and make a cookie cutter
Learners will design and make a cookie cutter using CAD and 3D printing.
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing is an area of huge growth, with applications ranging from small plastic parts to printing metal bridges in place over rivers!
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to develop skills in CAD and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Design and print a model town
With our design and technology KS3 teaching resource lesson plan and template, learners will create a visual answer to a design situation using both sketching and CAD drawing software, followed by 3D printing a physical model.
This is one of a set of teaching resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology and Engineering. This activity is based on CAD and 3D printing and provides a straightforward, practical way to introduce these technologies into the curriculum.
This activity could be used as a main lesson activity to reinforce CAD drawing skills or to introduce 3D printing. It could also be used as part of a scheme of work learning about the design process.
Activity:
Learners will decide upon a building to create and its purpose before sketching three draft ideas. They will then select the best features of their ideas before drawing a final design idea. Learners can share their ideas and concepts with peers for constructive feedback and improvement of designs.
Once their designs have been finalised they will use Onshape to produce CAD models of their buildings and then 3D print them to create a town including the work of the whole class.
Tools/supplies needed:
Pencils
Computer access with 3D drawing package (Onshape, Tinkercad, Fusion 360, Solidworks etc)
3D Printer and filament
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing in engineering facilitates rapid prototyping, customisation, and the production of complex geometries while reducing material waste and enabling on-demand production.
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to communicate a design, develop design skills using the Onshape CAD software and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
How to draw a plan view in maths
Producing a plan view will help children to develop drawing skills, while also introducing concepts such as dimensions, proportion, and scale. All through our fun, hand-on maths activity!
Different types of drawing are used to communicate different types of information. Plan views see a section of an object as projected on a horizontal plane. In effect, a plan view is a 2D section drawing viewed from the top – this is different from a top view, which would see all of the features looking down from above. In the case of a room, for example, a plan view may show tabletops, chairs, doors etc., whereas a top view would also show the legs of the tables, light fittings etc.
Plan views are widely used to show rooms or buildings from above. They may include measurements, furniture, appliances, or anything else necessary to the purpose of the plan. Plan views may be used to see how furniture will fit in a room, for example when designing a new kitchen, to show the builders the layout of a new building, or on estate agent’s literature to give potential buyers an indication of what a house is like.
The lesson will help learners pick up an understanding of the practical uses of these drawings, from planning the layout of a room to presenting quite complex information about buildings.
This is one of a set of resources developed to support the teaching of the primary national curriculum, particularly key stage two (KS2). It has been designed to support the delivery of key topics within maths and design and technology (DT). This could be used as a one-off activity, an extension to maths learning on scale, or linked to other school activities, such as preparing a map for parents evening.
The engineering context
Designers, engineers, and architects need to be able to communicate the details and features of rooms or products to other engineers, manufacturers, and users. This can include sizes, assembly instructions and layouts. Drawings are typically one of the main methods used for explaining this information – they can be found in every area of engineering and manufacturing.
Suggested learning outcomes
Children will learn about the purpose of a plan view drawing and be able to create one for themselves. They will also learn how to use dimensions and scale when drawing.
Download our activity sheet and related teaching resources
All activity worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
And please do share your classroom learning highlights with us @IETeducation.
Solar power in space
Investigate the photovoltaic effect and manufacture a simple circuit in this free activity.
In this engaging task, students will explore the photovoltaic effect by creating a simple circuit and incorporating it into a product—specifically, a solar-powered version of the well-known jitterbug project called a “solarbug”
This activity can serve as a targeted hands-on exercise for subjects like Electronics or Product Design under the umbrella of Design & Technology. Alternatively, it could be included as a component of a study on the application of solar energy in the field of science.
Activity: Solar power in space
Photovoltaic cells, also known as solar cells, are used as a power source by the James Webb Space Telescope (JWST).
This activity is one of a set of STEM resources developed with the theme of the James Webb Space Telescope to support the teaching of Science, Design & Technology, Engineering and Mathematics.
The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of increasingly complex electronic circuits.
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come.
Suggested learning outcomes
By the end of this activity, students will understand how photovoltaic cells work, how they can be used in a circuit and how to make a simple circuit.
The engineering context
The James Webb Space Telescope uses photovoltaic cells as its power source.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Investigate the James Webb Space Telescope
Examine the materials used on the James Webb Space Telescope in this free activity.
In this engaging STEM activity for KS3, we will delve into the groundbreaking technologies used in the construction of the James Webb Space Telescope (JWST), one of humanity’s most impressive space observatories.
As budding engineers, students will have the unique opportunity to investigate the engineered materials that make the JWST a marvel of modern engineering. Get ready to uncover the secrets behind the telescope’s incredible capabilities, discover the innovative materials that withstand the harsh conditions of space, and gain a deeper understanding of how scientific ingenuity allows us to peer into the universe’s farthest reaches.
Activity: Investigate the James Webb Space Telescope
In this activity, students will investigate an engineered material and share the results of their research with the class. This unit has a predominantly design & technology, and engineering focus, although it could be used in science. It could also be used as a main lesson or a research activity to develop an understanding of materials and their properties.
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
Suggested learning outcomes
By the end of this activity, students will be able to understand that materials can be selected for specific characteristics and purposes, they will be able to identify the properties of materials required for a particular function, and they will be able to explore a range of engineered materials, understanding why they are used.
The engineering context
The materials students will examine are used in the JWST or aerospace applications.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
The Vikings - Integrated project
Multi-lesson activity on The Vikings free KS2 lesson plan activity
This is a multi-lesson integrated classroom project teaching resource based around the theme of the Vikings. It aims to show how Design & Technology and Engineering can be built into a wider theme-based set of primary lesson activities covering a range of curriculum areas including Literacy, Numeracy, Computing/ICT, Design & Technology, Engineering, History and Art.
Teachers can select the activities they feel best fit with their lesson planning and carry out as stand-alone activities, or learners can complete all activities within this teaching resource as part of an integrated scheme of work.
Activity: Four activities based on the Vikings
Learners will look at who the Vikings were, where they came from and their importance in the history of the United Kingdom and Europe.
All classroom activities are suitable for the KS2 level and can be done as stand-alone activities or done in turn so as to complete the full multi-lesson integrated project.
The Engineering Context
Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about Viking longboats helps us to understand why boats float and what materials are the best to use in boat construction.
Engineers need to have good literacy and numeracy skills in order to successfully create design solutions and communicate their ideas.
Suggested learning outcomes
It is important for learners to understand about key people and groups of people from history as well as what we learnt from them. This resource combines history with art and design and technology and aims to show how engineering can be built into a wider theme-based multi-lesson project.
Specifically, children will learn how to research and analyse viking longboats including what they were made from and how they worked; they will be able to write and act out a script about how the Vikings lived; they will be able to design a Viking pin badge; and be able to make a Viking purse using one of two different methods.
Download our activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Design and make a prayer mat for Ramadan
Using our KS2 lesson plan and template, learners will design and make their own prayer mat for Ramadan using string, wool and colouring pencils while nurturing an understanding of the religious festival of Ramadan
In 2024 Ramadan starts on Sunday 10 March and ends on Monday 8 April. It is estimated that globally 1.6 billion Muslims will take part in Ramadan and will fast from sunrise to sunset for one lunar month.
In this lesson activity learners will look at what Ramadan is, what happens during Ramadan and what is important to Muslims during Ramadan. They will look at existing prayer mats and design a prayer mat using a provided template suitable for the KS2 level.
We’ve created this design activity to support the teaching of key topics within design & technology (D&T), religious studies and art.
This could be used as a one-off lesson activity to develop designing and sketching skills or an understanding of Ramadan. Alternatively, it could be used as a part of a wider scheme of work to develop designing and modelling skills in design & technology and engineering.
Tools/supplies needed:
Paper and card
Drawing implements: colouring pencils or pens, pencils and rulers
Scissors
Optional, if available – examples of actual prayer mats
For extension activities: glue sticks, string, wool, selection of materials
The Engineering context
All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients.
Suggested learning outcomes
It is important for learners to understand all types of religious festivals as part of their religious education. This resource combines religious education with art and design and technology with the aim that the learners will be able to generate, develop, model and communicate their ideas through discussion, annotated sketches and pattern pieces.
Specifically, children will learn the main considerations and features for designing a prayer mat for Ramadan and be able to design a prayer mat that reflects Ramadan using shapes and patterns.
Download our activity sheet and other teaching resources for free
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Design a charity box for Ramadan
Using our KS2 lesson plan and template, learners will design and make a charity box using card, glue sticks, split pins and decorations to count down the days of Ramadan while nurturing an understanding of this religious festival.
In 2024 Ramadan starts on Sunday 10 March and ends on Monday 8 April. It is estimated that globally 1.6 billion Muslims will take part in Ramadan and will fast from sunrise to sunset for one lunar month.
We’ve created this teaching resource to support the delivery of key topics within design & technology, religious studies and art.
This could be used as a one-off lesson activity to develop making and designing skills or an understanding of Ramadan. Alternatively, it could be used as a part of a wider scheme of work to develop making skills for graphic products in design & technology.
Learners will look at what Ramadan is, what happens during Ramadan and the importance of charity to Muslims. They will make a charity box that includes a feature to count down the days of the lunar cycle and can incorporate their own designs onto its external appearance.
Tools/supplies needed:
Paper and card (optional: paper plates)
Drawing implement: colouring pencils or pens, pencils and rulers
Scissors
Glue sticks
Split pins
Optional: decorations such as sequins, glitter, etc.
Suggested learning outcomes
It is important for learners to understand all types of religious festivals as part of their religious education. This resource combines religious education with art and design and technology with the aim that the learners will be able to generate, develop, model and communicate their ideas through discussion and annotated sketches, and to use a range of materials creatively to design and make this product.
Specifically, children will understand the main considerations and features for designing a charity box for Ramadan and be able to make this box considering the key features required, inclusion of the lunar countdown and how aesthetically pleasing it will be to the customer.
Download our activity sheet and other teaching resources for free
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Chinese zodiac animals
A graphics project making Chinese zodiac animals that move!
In this activity learners will learn about simple mechanisms (cams and linkages) within a graphics project. Learners will have an opportunity to use templates to help them cut out the parts for a cardboard Chinese zodiac animal.
Download the activities sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Resources required:
Card tubes
Wooden skewers
Glue sticks/ glue
Erasers
Sticky tack
Cardboard
Brass split pin fasteners
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Sew your own Christmas stocking
In this fun Christmas craft project for secondary school students, learners will design and sew their own Christmas stocking.
Our free resource is designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology and Engineering.
The free activity sheet and instruction presentation are available to download below.
Oh ho ho, and please do share your final creations with us @IETeducation! #SantaLovesSTEM
Make a homemade paper cone Christmas tree
Get kids thinking about 2-dimensional and 3-dimensional shapes, as well as faces, edges and vertices.
In this easy activity we are going to make paper cone Christmas trees which are fun to decorate and make a great centrepiece for any Christmas table.
Download the STEM activity sheet below for free, And if you’re up for an extra activity, try our wordsearch where you look for words used in the experiment to increase sticky learning.
Please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Parachuting presents
How to make a toy parachute activity.
In this Christmas STEM activity, kids will use items found at home to make two parachutes and test which one is faster. They will learn about gravity, air resistance and more.
Download the STEM activity sheet for free. If you’re up for an extra activity, help our present find its way back to Santa’s sleigh through the maze.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Christmas cracker jokes
Use a net to make a booklet, adding funny cracker jokes and designs to the pages where needed in this festive activity for kids.
This activity could be a main lesson to teach learners how to use nets to make useable objects. It could also be used as one of several activities within a wider scheme of learning focusing on understanding the use of nets in maths.
The testing of the jokes could be linked with learning in English, as they involve writing and oral expression of the cracker jokes.
This is one of a series of free STEM resources designed to allow learners to use Christmas themes to support the teaching of the primary National Curriculum. They are designed to support the delivery of key topics within maths and design and technology. This resource focuses on the use of a net to make a small booklet of funny cracker jokes, and these could be used as an alternative to the corny jokes often found in Christmas crackers!
Nets are important as they allow 3D objects to be made when folded.
Making the booklet:
Step 1 – Download the That’s a Cracker activity sheet. Identify the solid and dotted cutting lines.
Step 2 – Add the Christmas jokes.
Step 3 – ⚠ Safely cut out the booklet net using scissors.
Steps 4a and 4b – Fold the booklet as directed.
Step 5 – Now test out the jokes on friends!
As an optional extension activity, students could create and add their own designs and jokes to the booklet pages.
How long will this activity take?
This activity will take approximately 40-60 minutes to complete.
The engineering context
Engineers must regularly use mathematics knowledge and skills as part of their everyday job. They use nets to make scale models of buildings and other structures, as well as packaging for other products.
Suggested learning outcomes
By the end of this activity, students will know that graphics products can be made from nets, they will be able to add text to a graphic product, and they will be able to make a booklet from a net.
Download all the Christmas cracker jokes activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your classroom highlights with us @IETeducation! #SantaLovesSTEM.
Super sleigh alternative
In this festive activity designed for secondary school students, learners will design a high-tech, environmentally friendly replacement for Santa’s sleigh.
The sleigh will use a sustainable method of allowing it to fly through the air to deliver the presents. This free resource will build knowledge and skills in Design and Technology and Engineering.
A activity sheet, presentation and design sheets are available to download for free.
And please do share your classroom learning highlights with us @IETeducation
Santa's suit replacement
Designing a sustainable high-tech replacement for Santa’s famous red suit
In this activity, learners will design a replacement for Santa’s suit that meets a series of design criteria and incorporates at least one technology to make Santa’s work easier.
This free resource will develop creativity and graphics skills in design and technology, as well as increasing understanding of how developments in technology affect our lives.
A activity sheet, presentation and template are available to download for free.
And please do share your classroom learning highlights with us @IETeducation
Make a paper Christmas star lantern (Primary)
In this festive graphics project designed for primary aged kids, students will use nets to make parts from card and paper, which they will then assemble into a lantern shaped like a Christmas star.
This is a free resource that encourages learners to have fun with maths. Free handouts and templates are available to download below.
Oh ho ho, and please do share your creative highlights with us @IETeducation #SantaLovesSTEM
Make a Christmas star lantern (Secondary)
In this fun and festive graphics project designed for secondary school students, learners focus on the making of a lantern shaped like a Christmas star using folded card and paper.
This activity allows the theme of Christmas to develop their knowledge and skills in Design and Technology and Engineering.
A activity sheet, presentation and templates are available to download for free.
And please do share your classroom learning highlights with us @IETeducation
Snowball catapult
Build a simple snowball catapult capable of firing cotton wool balls in this festive activity for kids.
By the end of this activity, you will be able to:
Engineer a catapult that harnesses potential energy and then releases it quickly, transferring that potential energy into movement as the snowball is fired into the distance.
How long will this activity take?
This activity will take approximately 10 minutes to complete. To extend your catapult design skills and understanding of levers, try the Build a popsicle stick catapult activity.
What equipment will you need?
9 x lollipop sticks, 2 x elastic bands, cotton wool balls
How to do it
Step 1
Stack 5 of the lollipop sticks on top of one another.
Step 2
Place the 6th lollipop stick across the stack of 5 sticks in the shape of a cross.
Step 3
Place the remaining 3 sticks on top of the ‘cross’ stick, like the first 5 lollipop sticks.
Step 4
Wrap the elastic bands tightly around the thick stack of lollipop sticks at either end.
Step 5
Pull a piece of cotton wool from your cotton wool ball and roll it around to make a snowball.
Step 6
Place the snowball on the longest end of the ‘cross’ stick, and press down on the shorter end using one hand.
Step 7
Using the other hand, press back on the snowball and then fire!
Watch Marvellous Marthy and download the free activity sheet today!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Make a snow globe
This is a craft activity that all children can enjoy. Using an empty jam jar, children can make a snow globe with biodegradable glitter and a few other items from around the home or classroom.
Our step-by-step guide is simple to follow, making it a great STEM project for children. It is an enjoyable hands-on activity promoting creativity and stimulating imagination. It can be used as a craft project for the home or as a main lesson activity in school for the festive season. As well as teaching design creativity, there are potential curriculum links with the Art department and STEAM-based activities.
What you will need
Clean jam jar or mason jar (no labels) with a tightly fitting lid
Biodegradable glitter
Christmas decoration or festive ornament – make sure it’s waterproof and small enough to fit in the jar
Water
Glue gun and glue stick (or waterproof glue – a tube of clear, silicone sealant will do)
Glycerine or light corn syrup
The engineering context
Building a snow globe is a hands-on learning experience that combines art and science. It’s not only a fun winter craft activity for children, but it can also help to develop their STEM skills. While making a snow globe, children will develop their practical skills and learn about science and engineering concepts such as viscosity.
Suggested outcomes
This STEM craft activity will teach creativity and problem-solving skills. Children can experiment with different arrangements of objects, types of jar, and glitter distribution to create their desired scene. This process encourages them to think critically, make aesthetic choices, and find solutions if things don’t go as planned. It’s also an opportunity for them to express their individuality and explore their artistic side. The use of biodegradable glitter can also teach learners about sustainability and environmental issues.
The activity sheets are available to download for free.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. You can also watch our video tutorial to find out how to make a snow globe. If you’re up for an extra activity, try our number fun activity as well.
And please do share your handmade snow globes with us on social media on Facebook and Twitter using our #SantaLovesSTEM hashtag. You can also send them via email to IETEducation@theiet.org to be featured in our online gallery.